Medical Fraud Detection Management Market

Medical Fraud Detection Management Market

Global Industry Analysis (2018 - 2021) - Growth Trends and Market Forecast (2022 - 2027)

Published Date: Upcoming | Format:

Industry: Healthcare | Author Name: Amol

Global Medical Fraud Detection Management Market Critical to Better Reimbursements

Insurance fraud is a global challenge and has been considered as an integral part of the healthcare industry. It accounts for 10% of health care outlays and is increasing by 60-70% each year. The European Anti-Fraud Office (OLAF) published a report which estimates that around 5-10% of all spending within Europe's public healthcare systems is affected by some form of fraudulent activity, resulting in a direct annual loss of approximately $200 billion globally.

The demand for healthcare fraud detection management is attributed to several factors that are fueling its market expansion. These include increasing cases of insurance fraud across the world, government support and initiatives promoting the adoption of these services by medical organizations, and increased awareness among insured individuals about fraudulent activities in healthcare services. Additionally, a significant number of incidents related to health care fraud have been reported worldwide by medical organizations on account of which there is increased awareness among policyholders regarding this issue. The modern approach to handle data related to insurance filings has led to the development of advanced analytics systems that are being implemented by companies providing healthcare fraud management solutions globally. This will lead to growth in the number of insurance claims filed throughout the forecast period.

Increasing Instances of Insurance Fraud and Transparency in Claims Processing

In 2014, the U.S. Office of the Inspector General estimated that up to 10% of Medicare payments are affected by fraud or improper billing. Insurance providers have been early adopters because they discover phishing attacks almost immediately after they occur, so their sensitivity to security issues has led them to explore new opportunities. Healthcare providers are not excluded from the list of potential offenders, but lack of means to detect them other than through strict audits is further supporting them to commit such fraud.

Insurance companies across the nation are experiencing an increase in fraudulent claims, causing massive financial strain on insurance providers worldwide. Insurance premiums have already begun to rise, but consumers have yet to see any benefit from that increased premium. Insurance companies are being forced to pay back large sums of money that they rightfully should not have had to pay out in the first place. Some companies are now being forced to lay off employees due to their own fraudulent claims.

This has put tremendous pressure on the insurance providers to implement the medical fraud detection management services. As the providers had to face severe financial loss, which make them difficult to continue operating without reducing operational cost. Several insurance providers around the globe had to lay off their employees due to spiked fraudulent activities and reduced operational profit. As a result Fairfield Market Research states that the global medical fraud detection management market will save the long-term losses.

Machine Learning has Become a Key Part of Global Medical Fraud Detection Management Market

Fraudulent claims can come from both patients and healthcare providers, and it is estimated that the total annual loss to the U.S. national health expenditure exceeds $60 billion. To protect their investment in healthcare, insurers have launched initiatives designed to detect fraud. As a result, analytics has become a crucial component of many organizations' anti-fraud strategies.

Finding abnormal patterns in data collected from claims processing systems presents a tremendous technical challenge because these datasets are vast and extremely variable across different types of providers and insurance plans. They also contain considerable amounts of employee or peer-sensitive information such as Social Security Numbers (SSN) or National Provider Identifiers (NPI).

A machine learning-based solution can be trained on historical claims data to predict whether a submitted claim has a high probability of being fraudulent. It can then share this prediction with the appropriate decision-makers so they can investigate the claim further. Machine learning systems have been available for many years but until recently, these systems required significant human involvement to build training datasets and set parameters for accuracy. The system must often be "trained" on tens or hundreds of thousands of examples before it begins making accurate predictions about new claims. At some point, however, there is a tradeoff between model accuracy and model interpretability by humans-the more you train the system, the less understandable it is.

Key advances in machine learning now mean that systems can automatically build their training datasets with little to no human assistance. Systems are also able to determine how much they need to be trained on historical data, and which features of submitted claims matter most for making accurate predictions. Machine learning-based solutions predict patterns of fraud across different types of providers and plans so insurers can stop fraud more quickly than ever before, ultimately helping to lower prices for consumers while protecting their investment in healthcare.

Today, healthcare organizations are looking for ways to protect their investments against increasing numbers of fraudulent claims by making use of fraud analytics solution.

Emerging Nations Show Excellent Potential for Global Medical Fraud Detection Management Market

The growing need for medical fraud management is expected to drive the global market for external and internal healthcare fraud/anti-fraud solutions over the forecast period. The clinical trial cost has increased manifolds, and this coupled with stringent regulations and compliance policies will likely increase incidents of false claims and dishonesty in billing practices which are expected to propel the demand for automated anti-fraud systems from regulators over the next six years.

Countries such as Australia, South Korea, Taiwan, Brazil, Mexico, Russia, India, and China are witnessing a rise in their elderly populations who typically require long-term care. This is likely to give further impetus to rising incidences of systematic claim manipulation by staff employed in nursing homes among others due to pressure on profit margins leading to escalating demand for automated healthcare fraud management systems.

Healthcare providers are expected to continue being the major targets of external healthcare fraud/anti-fraud solutions over the forecast period. The market continues to be dominated by North America, which accounted for close to 42% share of the global revenue in 2020.

Global Medical Fraud Detection Management Market: Competitive Landscape

There are specialized services like Protenus (which detects suspicious billing patterns) or Data Clinic. These companies often collaborate with other service providers who specialize in case management and electronic claims submissions for maximum efficiency.

Several companies are offering this type of service; however, some of those with greater prestige and recognition are Aetna (Aetna Fraud Management), Optum Insight (Optum Insight Clinical Documentation Improvement), Xerox Special Services (Xerox Special Services Advanced Analytics) or UnitedHealth Group - Optum - Action Health Incorporated - First DataBank (United Healthcare Action Fraud Detection Program). Aside from these, there are also other specialized and less known companies which are worth mentioning such as: Anvita Health, MedSolutions, or Mirador Solutions.

In addition to the services mentioned above, there are local and regional companies that offer the entire suite of medical fraud detection management in their own specific area of expertise. An example would be a company like Onyx Mft Inc. that offers financial data analysis, patient profiling, and case management for different kinds of providers such as physicians' offices, hospitals, or other related centers.  The company also calculates an index score based on several factors so customers can know if they fall in a high-risk category when it comes to committing medical fraud and abuse.

Please Note: The above mentioned segmentation/companies/countries are likely to differ in the actual report as they are based on preliminary research.

Request Table of Contents

Our Research Methodology

Under uncertainty, traditional approaches to strategic planning can be downright dangerous. True ambiguity is no basis to forecast the future – degree of risk, the magnitude of circumstances, conditions and consequences are not known or unpredictable. To avoid dangerous binary views of uncertainty; strategic posture, moves and actions through market research is the best bet.

Read more
Fairfield Quality assured
Fairfield Confidentiality assured
Fairfield Custom research services